
Int. J. Hear Mass 7b1sfir. Vol. 20, pp. 1069-1075. Pergamon Press 1977. hinted in Great Britain 

A, 
B, 
C, 
e, 
F, 

h 
I, 

k, 
k 

;, 

m, 

n, 

P, 
P cur 

P. 

4m 

9L, 

R 

r, 

7: 

T,, 

T w, 
T m, 

t, 

v, 

x, 

INFLUENCE OF LIQUID HEAT CONDUCTION ON 
MAXIMUM PRESSURE DURING TRANSIENT FILM 

BOILING FROM A SPHERE TO A SATURATED LIQUID 

STEPHEN E. KIBBEE, JOSE ANTONIO OROZCO and LOUIS C. BURMEISTER 
Mechanical Engineering Department, University of Kansas, Lawrence, KS 66045, U.S.A. 

(Received 14 September 1976 and in revised form 28 December 1976) 

Abstract-The maximum pressure excursions which occur in the pure vapor film enveloping a very 
hot sphere of constant temperature which is suddenly exposed to a pool of saturated and stagnant liquid 
are analytically evaluated. Heat conduction in the incompressible liquid, arising from saturation tem- 
perature’s dependence upon pressure, is shown to be important. Generalized predictions for maximum 

pressure are presented in the form of graphs, and approximative equations are derived. 

NOMENCLATURE 

parameter, A* = P,/Rp&; 

parameter, B = (z - TJln (P/P,); 

liquid specific heat ; 
constant, e = 2.7182.. .; 
dimensionless parameter, 
F = a/[ 1 + (4/3)*/?ufdZ/dm I,,,] ; 
function of time; 
indefinite integral, 

I* = 
s 

’ [In(p)]* dz; 
0 

liquid thermal conductivity; 
vapor thermal conductivity; 
vapor mass per unit area in film; 
dimensionless vapor mass per unit area, 

m = M/P,&; 
integer; 
local pressure; 
pressure far from sphere; 
dimensionless film pressure, p = P/Pm ; 
heat flow into interface from vapor; 
heat flow from interface into liquid; 
sphere radius; 
radius; 
temperature; 
saturation temperature; 
sphere temperature; 
liquid pool temperature; 
time; 
liquid radial velocity; 
distance into liquid from interface, 
x = r-(R+6). 

Greek symbols 

dimensionless parameter, 

GI = CUT, - T,)/pJl WI% pm)*; 
liquid thermal diffusivity; 
dimensionless parameter, 

B* = (Wk,~,)[B/(T, - Tm)] CCB/Al ; 

4 penetration depth of temperature disturbance 
into liquid; 

6, vapor film thickness; 

60, initial vapor film thickness; 

8, dimensionless liquid temperature, 
0 = (r/R)(T- T,)/B; 

A, heat of vaporitition; 

Y, dimensionless parameter, 

Y = (~olR)W[UT, - T,)l; 
P* liquid density; 

PO, vapor density at ambient pressure and 
average temperature; 

2, dimensionless time, 7 = At. 

Superscripts 

., first ordinary time derivative; 

. .> second ordinary time derivative. 

INTRODUCTION 

THE PRESSURE excursions which follow sudden ex- 
posure of a hot body to a liquid pool have been the 
subject of several recent studies with the safety of 
nuclearreactorsas an important immediate application. 
Not only might nearby equipment and structures be 
affected by these pressure excursions, but it has also 
been conjectured that they could be responsible for the 
observed fragmentation of hot molten drops in con- 
tact with a liquid. 

Experimental studies pertinent to.this problem are 
few. Board et al. [l] measured pressure excursions 
arising from a metal foil suddenly heated by an elec- 
trical current while submerged in water and reported 
the pressure’s amplitudes and frequencies. Flory, Paoli 
and Mesler [2] photographically studied the frag- 
mentation of molten metal drops quenched in a liquid. 

Most transient film boiling analyses assume pressure 
to be constant in the vapor film which lies between 
the hot body and the liquid and are not applicable 
to the subject problem. Rooney [3] accounted for the 
pressure excursions in the pure vapor film surrounding 
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a constant temperature sphere immersed in a saturated 
liquid pool. He neglected heat conduction into the 
liquid and assumed the liquid to be incompressible. 
These simplifications permitted the oscillatory pressure 
excursions to be predicted at all times and for all 

ranges of the parameters considered by simple and 
analytically derived equations. However, his results 

give only the upper bound for the pressure excursion. 
Kazimi et al. [4] executed a detailed study of the same 
problem for a subcooled liquid, accounting not only 
for pressure excursions in the vapor film but also 

accounting for heat conduction in the liquid, liquid 

compressibility, finite heat capacity of the hot body, 
and the presence of some noncondensable gas in the 
vapor film. Because of the complexity of their mathe- 
matical model, numerical solutions specific to particular 
cases only were obtained. While they demonstrated 
that pressure excursions can be of appreciable mag- 

nitude and that the effects of liquid heat conduction 
are important, outweighing the effects of liquid com- 
pressibility, it is difficult to extend their results to 

other cases. 
The purpose of the present work is to extend the 

analysis of Rooney to account for the effect of heat 
conduction in a saturated liquid while retaining suffi- 
cient simplicity to allow accurate analytical solution 
of the describing differential equations. The overall aim 
is to achieve solutions for the maximum pressure ex- 
cursions which are easily applicable to a broad range 
of parameter values. 

PROBLEM FORMULATION 

As shown in Fig. 1, a sphere is immersed in a large 
pool of stagnant and saturated liquid with a thin film 
of vapor initially separating the sphere from the liquid. 

The sphere temperature is constant at a high value so 
that heat flows into the liquid-vapor interface by 
conduction across the vapor, generating additional 

vapor. Because the vapor is much less dense than the 
liquid, the liquid must ultimately be displaced away 
from the sphere which requires that the pressure in 
the film rise. In addition to accelerating the liquid 
away from the sphere, this pressure rise also increases 
the temperature of the liquid-vapor interface. As a 
result, heat is conducted into the liquid from the inter- 
face, leading to a vaporization rate which is diminished 
from its initial value. Because of the diminished vapori- 
zation rate and the resultant lessened need for vapor 

liquid pool 

The spatial distribution of dimensionless temperatures 
is approximated by 

O=(l-x/A)*ln(p) (5) 

which is most accurate for monotonically increasing 
interfacial temperatures. 

Introduction of equation (5) into equation (4) then 
gives 

FIG. 1. Physical configuration and coordinate system. d [A In (p)]/dT = 6A- ‘C(L In @)/A 

volume, the liquid need not undergo as rapid a dis- 
placement and the film pressure rise is less than in the 
absence of heat conduction into the liquid. 

Because of its,inertia, the liquid later undergoes too 
large a displacement; the pressure in the film decreases 

below the ambient value, and the liquid then accelerates 
toward the sphere. The general result is that film thick- 

ness and pressure have an oscillatory behavior. The 

present study emphasises an examination of pressure 
behavior only up to the first pressure maximum which 

would be expected to be the largest one. 
In the following analysis, a spherical geometry and a 

nonzero initial film thickness are assumed to avoid the 
infinitely large pressure excursions which otherwise are 

encountered for the assumed incompressible liquid. 
Gravitational body forces are neglected. The vapor film 
is taken to be thin enough for its curvature to be 
neglected and to always have a linear temperature 

distribution. It is also assumed that the liquid and 
vapor are in equilibrium at their interface at a tem- 
perature which corresponds to the instantaneous film 
pressure, and that the saturation temperature varies 

logarithmically with the film pressure. 
The one-dimensional energy equation for the liquid is 

aT/at + vdT/dr = aL(i3*T/ar2 + 2r- IaT/&) 

T(0, r) = T, 

T(t, R + 6) = T,(P) 
(1) 

T(t, co) = T, 

which is recast into the form 

ae/at+(v-B)ae/ax-u(x+R+s)-‘e 

= c(L2*tyax* 
LqO,x) = 0 
Qt,O) = R-‘(R+6)ln(P/P,) 

O(t, co) = 0. 

(4 

It has been determined by others that convection in the 
liquid is not important for the situation considered 

here [S]. Accordingly, equation (2) with convective 
terms neglected and with film thickness considered to 
be small relative to sphere radius simplifies to 

aelat = A- 1ccLa20/ax2 
0(0,x) = 0 
@,o) = In(p) 

(3) 

Q(7, co) = 0. 

An approximate, but accurate, solution to the simplified 

energy equation (3) is obtained by an integral method 
[6]. In integral form equation (3) is 

A 
d 

U ) 
edx Id7 = -A-bLaocZ,oyax. (4) 

0 
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from which it is found that 

Aln(p) = (12A-&,)*I (6) 

where 

i2 = 

The heat Row into the liquid at the interface. is 
evaluated from the relation 

(9) 

qL = - kaT(z, R + 6)/h 

and in conjunction with equation (6) to be 

qL = kR- ‘Bin (JP}+ B(4AkpC/3)~ df/dr, (7) 

Conservation of energy applied to the liquid-vapor 
interface requires that 

A dM/dt = qu - qL. (8) 

Assuming that heat flows from the hot sphere to the 
interface by induction through the thin vapor film, 
one has 

go = k,(T, - TIP 

equations (15) and putting into dimensionIess form it 
is found that 

d2 (mlp)/dr2 - Wp) d2m/dr2 

m(7 = 0) = 1 = p(r = 0). 

-G(&/W [d (m/p)/dr - (PJP) dm/dTl 

(24) 

x [3d (m/pW7 + b/p) dm/dTl = P - 1. (19) 

Because attention is focused on cases where the vapor 
film thickness is smal1 relative to the sphere radius, 
terms for which 6,/R is a coefficient can be deleted. 
Realizing, in addition, that the vapor is much less dense 
than the liquid (pJp << l), equation (19) reduces to 

d2 (m/p)/dz2 = p - 1. (20) 

Initial conditions imposed are that 

s(t = 0) = 60 (21) 

P(t = 0) = P, (22) 

u(t = 0, r) = 0. (23) 

From equations (21) and (22) the co~es~nding 
dimensionless initial conditions are 

where it is assumed that T,- T, is negligibly affected Equation (16) in conjunction with equation (23) re- 
by variation of saturation temperature. The vapor is quires initially that 
taken to be a perfect gas so that one also has 

&i = pti 
M = 6p, P/Pm. 00) 

Introducing equations (7), (9), and (10) into equation (8) 
then gives 

dm/dr = ab/rn- y In (p)] - (4~2~/3)~ dl/dr. (11) 

The one-dimensional continuity and momentum 
equations in spherical coordinates for the incompres- 
sible liquid are 

a(r2u)/& = 0 (12) 

which, when taken together with equation (10) gives 
the dimensionless initial condition 

d (m/p)/dr = WP) dm/dr. 

Again because py/p << 1, this initial condition can be 
represented as 

d (m/p)/dz = 0. (25) 

For convenience and clarity the equations to be 
solved and their initial conditions are brought together 

and dm/dr = crpim -(4/3)*@ df/dr (11) 
av~~ti~avz~ar = -p-1 aqar. (13) d2 ~rn~~)/dr2 = p - 1 (20) 

Equation (12) shows that and, at z = 0 

r2u = f(t). (14) m(7 = 0) = 1 = p(7 = 0) (24) 

Substitution of this result into the momentum equation d (m/p)/dr = 0. (25) 

(13) followed by integration from I = R+6 to r = 00 The d~ensionless film thickness is, from equation (lo), 
gives 

j‘l(~++$f2/(~+6)4 = (P-P,up. (15) 

Conservation of mass applied to the liquid-vapor 
interface requires that 

n;i = p(S-u}. (16) 

Substitution of equations (10) and (14) into equation 
(16) gives 

f/W + 6)’ = (p,/pJ d (M/P) dr - E;ilp. (17) 

Taking the time derivative of equation (17) results in 

j/(R+6)2-2f&(R+c+)3 = (P~/p”)d2(M/P~/dt2-~/p. 

(18) 

Upon substitution of equations (lo), (17), and (18) into 

6/60 = m/p. G-6) 

SOLUTJONS 

Equations (Il), (20), (24), and (25) must be solved 
to determine the dimensionless film pressure (p), mass 
per unit area (m), and thickness (S/S,) and are charac- 
terized by a nonlinearity which makes recourse to a 
numerical solution unavoidable in general. It must be 
remembered that the temperature profile used in the 
integral solution of the liquid’s energy equation is most 
accurate for monotonically increasing interface tem- 
peratures. Accordingly, any solutions obtained are 
most accurate to the time at which film pressure 
attains its first maximum. 
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The two parameters, c( and p, have opposite major 
influence as is seen by inspection of equation (11). 

The parameter rl can be interpreted as the initial rate 
of dimensionless vaporization. Since vaporized mass 
requires a pressure excursion to displace liquid away 
from the sphere, large pressure excursions are expected 

to be associated with large values of s(. And, small 
pressure excursions are expected when c( is small. 

The parameter p can be interpreted as the ratio of 
the conductive heat flux into the semi-infinite liquid 
pool (with a step change of interface temperature of 
magnitude B), evaluated after a time interval equal to 

that required for the initial vapor mass to be vaporized 
by conduction through the vapor at the initial rate, to 

the initial conductive heat flux through the vapor. In- 
asmuch as heat conduction into the liquid reduces the 

vaporization rate, fl acts primarily to diminish the 
pressure excursion. Accordingly, large values of /3 are 
expected to be associated with small pressure ex- 

cursions while small values of p are expected to be 
associated with pressure excursions only slightly below 

those predicted by Rooney for b = 0. As equation (11) 

shows, large values of cx have a greater effect upon the 
heat conduction through the vapor than upon the heat 
conduction into the liquid. Accordingly, pressure ex- 

cursions are expected to increase with increasing values 
of t( even for large values of /3. 

Their definitions show that p is independent of 

initial film thickness while LY is strongly dependent on 
it. Since the initial film thickness for a specific physical 

situation is somewhat uncertain, fl is likely to be 
known with more’certainty than is c(. 

Numerical method 
The general case was solved by application of the 

MIMIC program on an H635 digital computer. The 
step size used in the numerical integrations was auto- 
matically adjusted to maintain a prescribed accuracy. 

Small excursions 
For small pressure excursions a simple approximate 

solution can be obtained. Equation (11) can be re- 

written as 

dm/dr = ap/m - (4/3)~Buf(dI/dm)(dm/dz) 

and rearranged into the form 

dmldr = Fp/m (27) 

where F = IX/[ 1+(4/3)*/k* dl/dm I,,,] is assumed to be 
a constant which can be evaluated later, an insight 
gleaned from the numerical solutions. 

Equations (20), (26), (24), and (25) are then of the 
same form as those solved by Rooney. The solution is 

In(p) = Fm-* sin [(2/3F)(ml- l)]. (28) 

From this solution it is found that 

or 

P max : l+F (29) 

(32) 

at 

and 

m ,,,ax : (1 + 37cF/4)+ (30) 

r,,, = n/2. (31) 

I can be evaluated now by rearranging its definition 
into 

1’ = 
1 

m [ln(p)]‘(dr/dm)dm. 
1 

Incorporating equation (27) into this relation gives 

F12 = 
j_ 

lm [In (p)]‘(m/p) dm. 

For the case where p z 1, one then has 

F12 2 
s 

m [In (p)12m dm. 
1 

Introducing equation (28) yields 

I2 = (F2/4)(z-sinz) 

where 

z = (4/3F)(m+ - 1). 

Because equation (32) gives dI/dm as a nearly con- 

stant function, dl/dm is approximated by 

dlldm IaYe = (mmax- l)- 1 
3 

m,, 
(dljdm) dm 

1 

from which, in conjunction with equation (32) it is found 

that 

dlldm IaYe = F(~/4)~[(1+3nF/4)+- 11-i. 

For the limiting case where pressure is expected to be 

small (small values of F) 

dl/dm laYe = Y *. 

This result substituted into equation (29) gives 

pmax = 1 + a/[ 1 + (4/3#Baf]. (33) 

With the understanding that m is but little affected 
by pressure excursions when F is small, equation (26) 

reveals that the ratio of film thickness with and without 

pressurization is 

&ressurel&o pressure z 1 f F 

Thus, if there is to be less than a 10% influence of 
pressure excursions upon film thickness it is necessary 
that 

F = cc/[1 + (4/3rc)*/~?~x*] d 0.1. (34) 

The pressure oscillation’s frequency and amplitude 
are given by the same expressions previously given by 
Rooney, but with F from equation (34) used in place 
ofa. 

Large excursions 
The large pressure excursions that are expected when 

a is very large can also be predicted by an approximate 
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solution. For this case, equation (20) is accurately by equation (37), this result can be put into the more 

approximated as convenient form 

d2(m/p)/dz2 = p. (35) dlldm IaYe = 0.8192p;~X[{ln(p,,,)-0.6954}2+0.8443 

Repeating the argument advanced in connection with 
-0.6562/p,,,]*. (41) 

small pressure excursions, equation (11) is again Recalling again the relation between pmax and F given 
approximated by equation (27). by equation (37) and the definition of F, the final result 

Equations (35), (27), (24), and (25) are then of the is 
same form as previously solved by Rooney. The (e/2)ipk,X{ 1 +0.946p;jX[{ln (pmax)-0.6954}2 
solution is + 0.8443 - 0.6562/p,,,]+~a*} = a. (42) 

p= ,,,e-m316F2 (36) Although equation (42) is an implicit relation for 

from which it is found that 
pmax when u and fi are known, it is still useful because 

P ,,,ax = (2F21e)* (37) 
of its accuracy and algebraic nature. A practical pro- 
cedure for its use is to first solve it for cc* in terms 

at o* Pmax and p. Then successive assumed values of pmax 
are used with the known value of p until the calculated 

m max = (2F2)+ (38) c( equals the known value of CL More accuracy can be 

and 
obtained if the B and T,- T, values used to evaluate 
c( and p are determined at an average pressure in an 

7mx = (2/F)+ (39) iterative manner. 

showing that DISCUSSION 

f&J& z e+. The results of the calculations for maximum film 

Again, it is necessary to evaluate I which was pre- 
pressure are shown in Fig. 2. There it is seen that the 

viously shown to be available from the relationship 
approximate solutions for large and small values of the 
parameter c( are in good agreement with the numerical 

F12 = 
s 

lm [ln (p)]‘(m/p) dm. 
solutions except for the B = 0 case, where the approxi- 
mate solutions are inaccurate at intermediate values of 
CL. 

Introducing equation (36) into this gives 

FZ2 = 
s 

m [ln (m) - m3/6F2]’ em3/6F2 dm. - - - - equation 1331 

1 - - cquotion l4Pl 
- exact 

Expanding the squared term in the integrand and in- 
tegrating by parts leads to 

F12 = 
s 

Im [ln (m) + l/3]’ em3’6F2 dm + j’ em’/6F2 dm 
1 

-(2/3)mln(m) em316F2+ (,m4/18F2)e”‘3/6F2 

-(4m,9)em3:6F’-e”F2,18F2+4,9e”F’. 
l 

(40) 

Anticipating again that dI/dm does not vary much with FIG. 2. Dimensionless maximum pressure as a function of 

m, an average value is obtained as 
the dimensionless parameters E and j. 

dI/dmave = (mmax - l)- ’ 
s 

m,., 
(dZ/dm) dm 

Even though the factors of major influence are be- 

1 lieved to have been accounted for in this study, the 

or, 
results for maximum pressure must still be regarded 
as upper bounds. Accounting for the compressibility 

dUdma,, = (mmax - I)- 1~h,a3 of the liquid which is neglected here, for example, was 
shown by Kazimi et a[.‘~ numerical calculations to 

where m,_ is given by equation (38). The integrals lead to a slightly lower maximum pressure. The drop 
in equation (40) are evaluated by expanding em”i6F2 in in surface temperature of the hot sphere caused by 
series according to its loss of heat has also been neglected and would be 

em”i6F2 = “zO (m3/6F2)“/n! 
expected to lead to a slightly lower maximum pressure. 
However, the generality of the present results is be- 
lieved to justify the sacrifice in accuracy caused by 

which ultimately yields neglecting factors of only secondary influence. 

dUdm lave = 0.8192(2F2/e)*[{ln(2F2/e)*-0.6954}2 
To illustrate the application of these results, consider 

+0.8443 -0.6562(2F2/e)-f]*. 
a 500°C sphere of 0.3 cm radius suddenly put in con- 
tact with a 100°C pool of saturated water. For these 

Because of the relationship between pmax and F given conditions, p = 13. 
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If the initial vapor film thickness is 3 x iO-.3 cm, 
z = 0.6 and A = 3.5 x 104s-‘. Figure 2 and equation 
(33)showthat themaximumpressureis 1.08 x lO’N/m’, 
representing a pressure excursion of 0.08 x 10SN/m2 
and occurring after 45 x low6 s according to equation 
(31). The importance of heat conduction in the liquid, 
embodied in the parameter fi, is shown by the over- 
prediction that the maximum pressure excursion is 
0.5 x 105N/m2 if p = 0. The qualitative agreement of 
this case with the experimental pressure measurements 
of Board is good inasmuch as he reported pressure 
excursions of about 6900N/mz. Also, equation (34) 
shows that this pressure excursion would have less than 
a 10% influence on the growth of the film. 

At the other extreme, if the initial vapor film thick- 
nessislO_“cm,a = 3120andA = 61 x 104s-‘.Figure2 
and equation (42) indicate that the maximum pressure 
is 12.5 x 105N/m2, representing a pressure excursion 
of 11.5 x 105N/mz and occurring after 0.55 x 10W6s 
according to equation (39). ff heat conduction in the 
liquid had been ignored by setting B = 0, a pressure 
excursion of 192 x 105N/mZ would be predicted which 
testifies again to the importance of liquid heat con- 
duction. Although Kazimi et al., only executed 
calculations for a subcooled liquid with some non- 
condensable gas initially present in the film, at their 
lowest subcooling of 20°C they obtained a maximum 
pressure of 6.8 x 105N/mZ after 0.9 x 10e6s with an 
incompressible liquid for the conditions ofthis example. 

FIG. 3. Dimensionless pressure as a function of dimension- 
less time for o! = 3120 and p = 13: (a) present study with 
saturated liquid; Kazimi ef ~1. [4] for water with ambient 
pressure of latm at (b) 20°C subcooling and (c) 50°C 

s&cooling. 

This is only fair agreement, although the difference is 
in the proper direction since subcooling should yield 
a lower pressure. A plausible relation between the 
pressure excursions for saturated and slightly sub- 
cooled liquid pools is seen in Fig. 3 for the case where 
1 = 3120 and p = 13. 

The initial film thickness, as mentioned before, is 
likely to be an un~rtain quantity whose magnitude 
depends upon the specific circumstances encountered. 
Figure 2 and the foregoing illustrative examples in- 
dicate that if b is large, the maximum pressure 
excursion will be small and does not vary much with 
01 (which is dependent upon initial film thickness) so 
that the maximum pressure is rather insensitive to the 
initial conditions. Liquid compressibility can be safely 
neglected under these conditions. At the other extreme 
where /3 is small, the maximum pressure excursion is 
quite sensitive to the initial conditions and liquid com- 
pressibility would be of some importance. 
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INFLUENCE DE LA CONDUCTION THERMIQUE DU LIQUIDE 
SUR LE MAXIMUM DE PRESSION POUR L’EBULLITION EN FILM AUTOUR 

D’UNE SPHERE D’UN LIQUIDE SATURE 

RirrumC-On &value les pointes de pression maximale qui se produisent dans le film de vapeur pure 
qui enveloppe une sphere t&s chaude et B tempkrature constante, mise en contact brusque avec un tiquide 
saturk au repos dans un reservoir. On montre que la conduction thermique dans le liquide incompressibIe, 
lite ii la dtpendance de la tempkrature de saturatibn vis B vis de la pression, est tr&s importante. On 
presente, sous forme de graphes et d’kquations approchCes, les prkvisions g&&alis&es de la pression 

maximale. 

DER EINFLUSS DER FL~SSIGKEITSW~RMELEITUNG AUF DEN 
BEIM INST~BILEN FILMSI~DEN EINER GES~TTIGTEN FL~SSIGKEIT 

AN EINER KUGEL AUFTRETENDEN MAXIMALDRUCK 

Zusammenfassung-Beim pliitzlichen Eintauchen einer sehr heil3en Kugel konstanter Temperatur in eine 
ruhende, geslttigte Fliissigkeit entsteht ein reiner Dampffilm urn die Kugel. Die dabei auftretenden 
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maximalen Drticke werden analytisch ausgewertet. Infolge der Druckabhangigkeit der Sattigungs- 
temperatur ist die WZrmeleitung in der inkompressiblen Fliissigkeit von besonderer Bedeutung. Der 
Maximaldruck wird in Form verallgemeinerter Diagramme wiedergegeben; eine Naherungsgleichung 

wird abgeleitet. 

BITHJTHHE TEl-IJTOl-fPOBOAHOCTM )KHAKOCTH HA MAKCWMAJIbHOE AABJTEHWE 
I-fPH HECfAHHOHAPHOM TDTEHOYHOM KHI-IEHHW HA TIOBEPXHOCTH BIAPA, 

HOI-PYXEHHOFO B HACMBJEHHYFO XKMAKOCTb 

~OTtUIllll- Aati aHa.WiTWeCKHfi paNeT MaKCBMaJIbHblX OTKJIOHeHHii aaBJIeHWl B nJleHKe 'iACTOr 

napa, norcpbmammeB crinbno riarperbri map c nocrormrol rehmeparypot3, npa ero miesannoh4 
nOrpy)KeHHH B 06xM HaCbIIUeHHOii W HenOnBHXCHOfi )I(BAKOCTH. nOKa3aHa BBXCHOCTL npOUeCCa 

TellJIOnpOBOLlHOCfH B HeGiGiMaeMOfi XWJ,KoC~, B03HHKUOIIleTO BCJIeilCTBHe 3aBWCHMOCTH TeM- 

nepa-rypbr Hacbnuefnin 0T AaBneHkix rpa@iwcKti npezvxaBneHbI 0606LUeHHbIe ~~BH~HM~cTH nna 

MaKCEiMiUIbHOrO AaBJIeHAII W BbIBeAeHbI llpIt6JIlilKeHHbIe YpaBHeHHr. 
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